Duration-sensitive neurons in the inferior colliculus of horseshoe bats: adaptations for using CF-FM echolocation pulses.

نویسندگان

  • Feng Luo
  • Walter Metzner
  • Feijian Wu
  • Shuyi Zhang
  • Qicai Chen
چکیده

The present study examines duration-sensitive neurons in the inferior colliculus (IC) of the least horseshoe bat, Rhinolophus pusillus, from China. In contrast to other bat species tested for duration selectivity so far, echolocation pulses emitted by horseshoe bats are generally longer and composed of a long constant-frequency (CF) component followed by a short downward frequency-modulated (FM) sweep (CF-FM pulse). We used combined CF-FM pulses to analyze the differential effects that these two pulse components had on the duration tuning in neurons of the horseshoe bat's IC. Consistent with results from other mammals, duration-sensitive neurons found in the least horseshoe bat fall into three main classes: short-pass, band-pass, and long-pass. Using a CF stimulus alone, 54% (51/95) of all IC neurons showed at least one form of duration selectivity at one or more stimulus intensities. In 65 of the 95 IC neurons tested with CF pulses, we were also able to test their duration selectivity for a combined CF-FM pulse, which increased the ratio of duration-sensitive neurons to 66% (43/65). Seven to 15 neurons that failed to show duration tuning for CF bursts became duration sensitive for CF-FM pulses, with most of them exhibiting short-pass (depending on stimulus intensity, between 4 and 8 neurons) or band-pass tuning (1-3 neurons). Increasing stimulus intensities did not affect the duration tuning in 53% (23/43) of duration-sensitive neurons for CF bursts and in about 26% (7/27) for CF-FM stimuli. In the remaining neurons, increasing sound levels generally reduced the ratio of duration-sensitive neurons to 33% for CF and 37% for CF-FM stimulation. In those that remained duration sensitive, louder CF bursts shortened best durations in band-pass neurons and cutoff durations in short- and long-pass neurons, whereas louder CF-FM stimuli reduced the cutoff durations only in short-pass neurons. Bandwidths of band-pass neurons were not significantly affected by any stimulus configuration, with only a slight trend for increasing bandwidths for louder CF bursts (but not CF-FM stimuli). Best durations and cutoff durations reached higher values than those in the other bat species examined so far and roughly match the longer durations of echolocation pulses emitted by horseshoe bats. Therefore presentation of a CF-FM stimulus improved the duration sensitivity in IC neurons by increasing the ratio of duration-tuned neurons and making them less susceptible to changes in signal intensity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex of the pallid bat.

Frequency-modulated (FM) sweeps are common in vocalizations, including human speech. Selectivity for FM sweep rate and direction is present in the auditory cortex of many species. The present study sought to determine the mechanisms underlying FM sweep selectivity in the auditory cortex of pallid bats. In the pallid bat inferior colliculus (IC), two mechanisms underlie selectivity for FM sweep ...

متن کامل

Brain Mechanisms of Behavior (psy 445) Lecture 8 Neural Mechanisms of Echolocation in Bats 1

The animal: Bats are the most numerous order of mammals, and the most diversified of any animals on earth. This incredible evolutionary success is probably due to the huge advantage that echolocation gives them over their competitors by allowing them to fly and hunt in the dark. Several species are commonly studied in the lab, including the big brown bat, which is an FM bat, the horseshoe bat, ...

متن کامل

Auditory-feedback control of temporal call patterns in echolocating horseshoe bats.

During flight, auditory feedback causes horseshoe bats to adjust the duration and repetition rate of their vocalizations in a context-dependent manner. As these bats approach a target, they make finely graded adjustments in call duration and interpulse interval (IPI), but their echolocation behavior is also characterized by abrupt transitions in overall temporal calling patterns. We investigate...

متن کامل

Ambiguities in sound-duration selectivity by neurons in the inferior colliculus of the bat Molossus molossus from Cuba.

This study examines duration selectivity in auditory neurons of the inferior colliculus of the bat Molossus molossus (Molossidae, Chiroptera) from Cuba. Three main types of duration selectivity, short-, band-, and long-pass, as previously described in other species, are present in M. molossus. The range of best durations in the inferior colliculus of this species approximates the durations of t...

متن کامل

The peripheral auditory characteristics of noctuid moths: responses to the search-phase echolocation calls of bats

The noctuid moths Agrotis segetum and Noctua pronuba show peak auditory sensitivity between 15 and 25 kHz, and a maximum sensitivity of 35 dB SPL. A. segetum shows a temporal integration time of 69 ms. It is predicted that bats using high-frequency and short-duration calls will be acoustically less apparent to these moths. Short-duration frequency-modulated (FM) calls of Plecotus auritus are no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 99 1  شماره 

صفحات  -

تاریخ انتشار 2008